

Best Practices Using CDS Client
This document will give some hints about how to use the CDS Client API efficiently.

The CDS Client API allows configuring SwyxWare. For that purpose, the CDS provides a set of
web services. For each web service the CDS Client contains a client proxy class.

 Minimize amount of CDS calls:
Each web service call causes a certain overhead. Therefore, try to minimize the
amount of calls. For example, avoid invoking a method for each user to retrieve
certain information. In most cases, there is another method to retrieve the data of
several users by one invocation. See the difference between “Enum” proxies and
“Facade” proxies below.

 Reduce the set of used CDS Client proxies.
Try to identify the proxies that will be needed for you program:
Recommendation:

o Programs running in the client environment should use
 PhoneClientFacade
 FilesFacade
 UserPhoneBookEnum

o If you want to administrate SwyxWare you should use:
 AdminFacade
 UserEnum
 GroupEnum
 PortBundleEnum
 LocationEnum
 EditablePhoneBookEnum
 FilesFacade

o Following proxies should not be used by third party applications:
 IpPbxServerFacade
 PortManagerFacade

 Understand the authentication system.
The CDS Client API does not use a classic login mechanism. The communication
between CDS client and server is stateless. As a result, each web service call will be
authenticated separately.
The server address, type of authentication and the user credentials are properties of
the central LibManager class. When creating a new proxy object, the LibManager
attaches this information to the new proxy client object and an initial web service call
will be made to contact the server.
Each web service request (CDS calls) will be authorized by using this security
information. The initial call checks if the service is available. In most cases the
authorization will be checked by this call also. (Not in AdminFacade and
PhoneClientFacade)

Consequences:
o If you want to change the server destination or the user credentials you have

to change the information in the LibManager object and in all existing proxy
objects.

o After a connection interruption there is nothing to do to re-establish the
connection.

 Understand the difference between “Enum” proxies and “Façade” proxies
The CDS Client API contains two different types of web service client proxies.

o Each “Enum” proxy class is responsible for one primary configuration item
(User, PortBundle etc.). The primary configuration item enumerations can
contain sub enumerations.
How to work with “Enum” proxies:

 Receive a set of configuration data by specifying filter criteria. (Users,
Groups, PortBundles etc.)

 Modify the data on client side.
 Write back the configuration to the server using update methods. If

you call Update() on the enum objects all objects in that enumerator
will be written back to the server and update the database.

o “Facade” proxy classes are providing specialized, read-only views of the
configuration data. A facade also provides specialized methods to manipulate
the data directly, i.e. to perform specific tasks. Facade views need less
performance (memory and cpu load).

 Use locally collection classes for sorting and additional filtering.
Every collection class in the CDS Client API contains a method to create a sortable
collection. This collection object can be easily sorted by any attribute; it can contain
additional filter operations and can be bound directly to data grid controls.

 Use the version check mechanism
The AdminFacade and the PhoneClientFacade provide a CheckVersion method.
It checks if the used CDS Client API is compatible with the server. If that function fails,
CDS client and server are not compatible. You should terminate the client application
in that case. If it has a user interface, inform the user appropriately.

 Use the GlobalConfigItem class to persist additional data used by your application
It is possible to persist third party data by using the GlobalConfigItem class. It offers a
generic configuration data table to store named data items of typical simple types
like integer, boolean or string.

 Exception handling and localization of exception messages
all exception classes in namespace SWConfigDataSharedLib.Exceptions contain a
property called ‘Localized’. If true, the exception message text is localized in the
languate defined in the client application config file:

<SWConfigDataSharedLib.Properties.Settings>
 <setting name="Culture" serializeAs="String">
 <value>en</value>
 </setting>
</SWConfigDataSharedLib.Properties.Settings>

Usually SwyxWare clients are single-language, so that only the satellite assembly
(IpPbxCDSSharedLib.resource.dll) for one language is present. Make sure that your
application configuration file setting matches that language or keep English which is
available always.

